frontiers in Public Health
published: 28 September 2017
doi: 10.3389/fpubh.2017.00258
An Overview of Heart Rate Variability Metrics and Norms
Fred Shaffer1* and J. P. Ginsberg2
1 Center for Applied Psychophysiology, Truman State University, Kirksville, MO, United States,
2 William Jennings Bryan Dorn VA Medical Center (VHA), Columbia, SC, United States
Healthy biological systems exhibit complex patterns of variability that can be described by mathematical chaos. Heart rate variability (HRV) consists of changes in the time intervals between consecutive heartbeats called interbeat intervals (IBIs). A healthy heart is not a metronome. The oscillations of a healthy heart are complex and constantly changing, which allow the cardiovascular system to rapidly adjust to sudden physical and psychological challenges to homeostasis. This article briefly reviews current perspectives on the mechanisms that generate 24 h, short-term (~5 min), and ultra-short-term (<5 min) HRV, the importance of HRV, and its implications for health and performance. The authors provide an overview of widely-used HRV time-domain, frequency-domain, and non-linear metrics. Time-domain indices quantify the amount of HRV observed during monitoring periods that may range from ~2 min to 24 h. Frequency-domain values calculate the absolute or relative amount of signal energy within component bands. Non-linear measurements quantify the unpredictability and complexity of a series of IBIs. The authors survey published normative values for clinical, healthy, and optimal performance populations. They stress the importance of measurement context, including recording period length, subject age, and sex, on baseline HRV values. They caution that 24 h, short-term, and ultra-short-term normative values are not interchangeable. They encourage professionals to supplement published norms with findings from their own specialized populations. Finally, the authors provide an overview of HRV assessment
strategies for clinical and optimal performance interventions.
Keywords: biofeedback, complexity, heart rate variability, non-linear measurements, normative values, optimal
performance
Read the full study: Overview-HRV-Metrics-Norms